
U
N
C
O
R
R
EC

TE
D
PR

O
O
F

1 Chapter 14
2 Implementing Shape Grammars
3 for Designers

4 Andrew I-kang Li

5 Abstract For the computational understanding of visual artifacts, shape grammar
6 provides an important theoretical framework. In addition to the theory, there have
7 been numerous computer implementations; these have tended to be proofs of
8 concept. As such, they are essential steps in development, but do not directly help
9 researchers do the kind of analyses seen in the literature, which were done by hand.

10 That is to say, we have a theory but not yet a sturdy tool. We present a prototype
11 implementation to help designers and design researchers work with shape gram-
12 mars. This implementation allows users to focus on domain tasks—editing and
13 testing grammars—by shielding them from sub-domain tasks—mechanical tasks
14 like matching shapes and applying rules. A grammar is displayed as a collection of
15 shapes in 3D space that users can manipulate directly; a commercial 3D modeling
16 application is used for this purpose. The components of the implementation are
17 designed to make it easy for users to switch between editing and testing their
18 grammars. The implementation handles emergence and is general. We report on
19 users’ experiences with the implementation in workshops on grammatical design
20 and analysis.21

22 14.1 Introduction

23 For the computational understanding of visual artifacts, shape grammar [1, 2]
24 provides an important theoretical framework. It has been used on subjects ranging
25 from patterns on classical Greek pottery [3] to a twelfth-century Chinese text on
26 buildings [4] to twentieth-century paintings [3].
27 In addition to the theory, there have been numerous computer implementations
28 (see Chase [5] for a thorough overview); these have tended to be proofs of concept.
29 As such, they are essential steps in development, but do not directly help

A.I. Li (&)
Kyoto Institute of Technology, Kyoto, Japan
e-mail: andrewli@kit.ac.jp

Layout: T1 Standard Book ID: 418385_1_En Book ISBN: 978-981-10-2328-6

Chapter No.: 14 Date: 1-9-2016 Time: 7:10 pm Page: 165/176

© Springer Nature Singapore Pte Ltd 2017
J.-H. Lee (ed.), Morphological Analysis of Cultural DNA,
KAIST Research Series, DOI 10.1007/978-981-10-2329-3_14

165



U
N
C
O
R
R
EC

TE
D
PR

O
O
F

30 researchers do the kind of analyses above, which were done by hand. That is to say,
31 we have a theory but not yet a sturdy tool.
32 As an analogy to this situation, consider the financial spreadsheet. The idea is
33 straightforward. There is a matrix of cells, and in each cell the financial analyst can
34 enter either a number (an independent variable) or a formula that operates on
35 numbers in other cells to produce a new number (a dependent variable). If he
36 changes one or more of the independent variables, the dependent variables change
37 accordingly.
38 There are two levels of work here. One involves formulating the independent
39 variables and the formulas. This is the stuff of financial analysis, the domain level.
40 The other level is the calculation of the dependent variables. This is straightforward
41 execution of domain-level decisions and occurs at the sub-domain level.
42 In an implementation of a spreadsheet, the work is divided cleanly: the financial
43 analyst works with the numbers and formulas, and the implementation takes care of
44 the arithmetic. He is relieved of sub-domain work and can focus on domain work.
45 If there were no spreadsheet application, and the financial analyst had only grid
46 paper, pencil, eraser, and perhaps a calculator, he could still do his work, but it
47 would be slow and he would make many mistakes. Worse, he would be spending
48 time and effort on arithmetic that he could be spending on financial analysis.
49 This is roughly the situation of design analysts who use shape grammars. Their
50 domain work is creating grammars and evaluating the designs generated. [See
51 Computing style [6]] The sub-domain work involves applying rules to existing
52 shapes to produce new shapes; this is shape arithmetic. In studies like those
53 mentioned above, the analysts worked by hand, doing large amounts of shape
54 arithmetic while trying to remember the big picture.
55 In response, we have developed a prototype implementation for shape grammars
56 in which design analysts draw shapes and rules directly, just as financial analysts
57 enter numbers and formulas directly into the cells of a spreadsheet. The imple-
58 mentation then takes care of the shape arithmetic, just as a spreadsheet application
59 takes care of the financial arithmetic.

60 14.2 The Implementation

61 The implementation has three components. The first is the commercial modeling
62 application, Rhinoceros3D; users use it to create, edit, and save grammars.
63 The second component is a free-standing shape grammar interpreter.1 With
64 this, users run grammars and generate new shapes. It is general, which means that

1The interpreter is based on an engine by Chau et al. [7]. This engine transforms shapes, finds
subshapes, applies rules, and displays the current shape (in 3D). It handles emergence and labeled
points. We wrapped this engine in an interface that displays rules visually; displays next shapes;
and imports and exports shapes, rules, grammars, and derivations [8].

166 A.I. Li

Layout: T1 Standard Book ID: 418385_1_En Book ISBN: 978-981-10-2328-6

Chapter No.: 14 Date: 1-9-2016 Time: 7:10 pm Page: 166/176



U
N
C
O
R
R
EC

TE
D
PR

O
O
F

65 users can make and use their own grammars. It also handles emergence, which, as
66 Krishnamurti ([9]: 940, n. 9) says, is what makes an implementation “worthwhile”.
67 The third component is a set of scripts, written in Python and RhinoScript. Users
68 use these to transfer grammars and shapes between Rhino and the interpreter.
69 To demonstrate how a user would use the implementation, we show how to
70 create and run a grammar that generates the fractal designs known as Sierpiński
71 gaskets. The grammar consists of one initial shape (the labeled tetrahedron) and two
72 rules. Each rule consists of a left shape, an arrow, and a right shape. Each shape is
73 contained in a frame (Fig. 14.1).
74 To generate a new design, the user starts with the initial shape, applies one of the
75 rules, and transforms the initial shape into a new shape.2 She continues applying a
76 rule, each time transforming the current shape into a new shape, until she is satisfied
77 with the shape or until a rule cannot be applied (Fig. 14.2).

78 14.3 Using the Implementation

79 Using the implementation involves these steps:

80 1. Creating the grammar.
81 2. Testing the grammar; i.e., generating and evaluating designs.

Fig. 14.1 A grammar for creating three-dimensional Sierpiński gaskets. It consists of an initial
shape (left) and two rules (right)

2For the technical explanation of rule application, see Stiny [1].

14 Implementing Shape Grammars for Designers 167

Layout: T1 Standard Book ID: 418385_1_En Book ISBN: 978-981-10-2328-6

Chapter No.: 14 Date: 1-9-2016 Time: 7:10 pm Page: 167/176



U
N
C
O
R
R
EC

TE
D
PR

O
O
F

82 3. Revising and retesting the grammar until the results are satisfying; i.e., moving
83 repeatedly through the edit–test cycle.
84 4. Using the results for some further purpose, i.e., converting the shapes from
85 representations to more concrete artifacts like images for publication or
86 3D-printed objects.

87 14.4 Creating the Grammar

88 The user’s first step is to set up an empty grammar document in a Rhino document;
89 she does this with the new grammar script. The script creates two layers, one each
90 for an initial shape and a rule, and draws three frames. Each frame delineates the
91 volume inside which she can draw a shape (Fig. 14.3).
92 Now she can draw shapes with lines and annotation text dots.3 Each shape
93 should lie within the appropriate frame and on the appropriate layer. She can edit
94 the grammar in any way at any time: she can add initial shapes and rules with the
95 new initial shape and new rule scripts; she can delete initial shapes and rules; and
96 she can revise initial shapes and rules. In this way, she can draw the two-rule
97 grammar for generating three-dimensional Sierpiński gaskets (Fig. 14.1).

Fig. 14.2 The derivation of a new Sierpiński gasket, behind the original grammar. It consists of 6
shapes: the initial shape (at the back), 4 intermediate shapes (to the right of the initial shape), and
the final shape (in front of the initial shape)

3Because the labeled points are implemented as annotation text dots, the labels can consist only of
text. These are not as appealing as graphic labels, which are frequently seen in the literature, but
they are functionally equivalent.

168 A.I. Li

Layout: T1 Standard Book ID: 418385_1_En Book ISBN: 978-981-10-2328-6

Chapter No.: 14 Date: 1-9-2016 Time: 7:10 pm Page: 168/176



U
N
C
O
R
R
EC

TE
D
PR

O
O
F

98 The user can arrange the initial shapes and rules in any way she finds congenial,
99 just as she can arrange icons on her computer desktop. This contributes to the sense

100 that the grammar is an object for her to work with, to manipulate directly.
101 When she has finished drawing the grammar, she exports it with the export
102 grammar script, which generates a file. This is a text file and is easy to understand,
103 but in most cases she need not look at it.

104 14.5 Testing the Grammar

105 Now that the user has exported the grammar, she moves to the interpreter to
106 generate shapes. The interpreter has three windows: the main window, in which the
107 grammar and the current shape are displayed; the preview window, in which the
108 possible next shapes are displayed; and a console window, for diagnostic purposes.
109 She opens the grammar file. The initial shape and rules are displayed in plan
110 view on the left; the main canvas, on the right, is empty at first (Fig. 14.4).
111 To start generating shapes, the user selects the initial shape4; it then appears in
112 the main canvas as the (first) current shape; it can be displayed in isometric,
113 perspective, or orthographic views, and can be rotated in space (Fig. 14.5).
114 To see what next shapes can be obtained by applying any of the rules, the user
115 clicks show distinct (all rules). To see those resulting from a single selected rule,
116 she clicks show distinct (1 rule). The next shapes, if any, appear in plan view as a
117 scrollable list in the preview window (Fig. 14.6). Calculating these next shapes is
118 shape arithmetic, and it is done by the implementation, not by the user.

Fig. 14.3 The Rhino document, set up as an empty grammar document. The user draws an initial
shape inside the left frame, and left and right shapes in the middle and right frames

4It is necessary to select the first current shape because there may be more than one initial shape.

14 Implementing Shape Grammars for Designers 169

Layout: T1 Standard Book ID: 418385_1_En Book ISBN: 978-981-10-2328-6

Chapter No.: 14 Date: 1-9-2016 Time: 7:10 pm Page: 169/176



U
N
C
O
R
R
EC

TE
D
PR

O
O
F

119 In this case, there are two next shapes. The user can inspect either of these by
120 selecting it; it then replaces the initial shape in the main canvas, becoming the new
121 current shape (Fig. 14.7). She can continue applying rules and transforming the
122 current shape until she is satisfied with the result. The interpreter retains a record of
123 this history, known as a derivation.
124 If the user wants to undo or redo a rule application, she can step backward and
125 forward through the derivation, as in a browser. It also may happen that she decides
126 that she will not get a satisfactory result with the grammar as it is. In this case, she
127 can simply return to the grammar document in Rhino, revise it, and run the revised
128 version in the interpreter.
129 Let us assume that the user does not need to modify the grammar and has now
130 finished a satisfactory Sierpiński gasket (Fig. 14.8).
131 She can save her results by selecting Save derivation. The interpreter generates a
132 file which, like the grammar file, is an easily understood but ignorable text file. It
133 includes the grammar, the initial shape, the final shape, all intermediate shapes, and
134 the rule applied at each iteration.

Fig. 14.4 The main window of the interpreter after importing the grammar. The initial shape is on
the upper left. The rules are on the lower left. They are shown in plan view. No current shape has
been selected, so the main canvas, on the right, is empty

170 A.I. Li

Layout: T1 Standard Book ID: 418385_1_En Book ISBN: 978-981-10-2328-6

Chapter No.: 14 Date: 1-9-2016 Time: 7:10 pm Page: 170/176



U
N
C
O
R
R
EC

TE
D
PR

O
O
F

Fig. 14.5 The main window of the interpreter after selecting the initial shape as the (first) current
shape. Since no rules have been applied yet, it is still the initial shape. It is shown here in isometric
view

Fig. 14.6 Given the current shape and the rules, there are two possible next shapes. They are
shown in plan view in the scrollable preview window on the left

14 Implementing Shape Grammars for Designers 171

Layout: T1 Standard Book ID: 418385_1_En Book ISBN: 978-981-10-2328-6

Chapter No.: 14 Date: 1-9-2016 Time: 7:10 pm Page: 171/176



U
N
C
O
R
R
EC

TE
D
PR

O
O
F

Fig. 14.7 The user selects one of the two possible next shapes (left window); it becomes the new
current shape (right window, main canvas)

Fig. 14.8 The finished Sierpiński gasket

172 A.I. Li

Layout: T1 Standard Book ID: 418385_1_En Book ISBN: 978-981-10-2328-6

Chapter No.: 14 Date: 1-9-2016 Time: 7:10 pm Page: 172/176



U
N
C
O
R
R
EC

TE
D
PR

O
O
F

135 14.6 Using the Results

136 The user’s work is not done: she has created new shapes, but now she needs to use
137 them. That is, she needs to transform these representations into physical artifacts,
138 whether fabricated objects or simply drawings on a page [10]. To begin this
139 transformation, she uses the import derivation script, which uses the derivation file
140 to draw the derivation in the Rhino document (Fig. 14.2). Now all the shapes in the
141 derivation, from the initial shape to the final shape, appear in Rhino as wire frame
142 models, which she can use like any others created in Rhino. She can convert them
143 to surface and solid models; she can render and fabricate them.

144 14.7 Observations and Discussion

145 We have used our implementation in several workshops on mass customized
146 design, ranging from one to five days in length. In the longer workshops, partici-
147 pants not only created designs with the implementation; they also converted those
148 designs into physical objects through laser cutting and 3D printing. Some partici-
149 pants had a basic familiarity with Rhino or similar modeling application, and all
150 were new to shape grammar. They were learning both shape grammar and the
151 implementation at the same time.
152 The goal of the workshops was not to test the implementation per se; it was to
153 give the participants the experience of accomplishing design tasks with shape
154 grammars and the implementation. Thus, we were interested to see whether the
155 implementation generally helped or hindered them, and in what ways.

156 14.8 Users Were Able to Focus on Domain-Level Work

157 We observed that participants learned the basics of both shape grammar and the
158 implementation quickly, and were then doing design work easily, including
159 downstream fabrication. For example, in the two-day workshop, participants were
160 introduced to shape grammar on the first day, and to the implementation on the
161 morning of the second day. By the end of the second day they had created and
162 revised grammars, created designs, and fabricated some of those designs.
163 Once the participants had become familiar with the implementation, they
164 focused on domain-level questions: What if I change this rule? How do I get that
165 shape? In other words, they were successfully shielded from sub-domain-level
166 tasks. We attribute this to several factors.
167 One is that the domain objects—the shapes and rules of the grammar—are
168 presented in a domain-appropriate way, i.e., visually, and are directly manipulable.
169 Most domain operations, such as ‘find next shapes’, are single commands, initiated
170 by the user but executed by the implementation.

14 Implementing Shape Grammars for Designers 173

Layout: T1 Standard Book ID: 418385_1_En Book ISBN: 978-981-10-2328-6

Chapter No.: 14 Date: 1-9-2016 Time: 7:10 pm Page: 173/176



U
N
C
O
R
R
EC

TE
D
PR

O
O
F

171 Another is that the implementation is general. Given the basic elements of lines
172 and labeled points in three-dimensional space (using the U13 and V03 algebras, in
173 grammar speak), users can create any shapes and rules. They can create grammars
174 for their own purposes.
175 Finally, we suspect that being able to manipulate shapes directly and getting
176 feedback quickly create a virtuous cycle that motivates users.

177 14.9 Users Were More Interested in Product Than Process

178 The derivation of a design is unique to that design, and specifies it within the design
179 space. Grammars in the literature regularly include derivations. Given this signif-
180 icance, we provided the capability to move an entire derivation—not just the final
181 shape—from the interpreter back into Rhino, and we expected users to use this
182 capability. However, we observed that users showed little interest in the derivation.
183 Instead, they were interested in accumulating new designs: product over process.
184 This discrepancy between theory and practise is, on reflection, not really sur-
185 prising. As Woodbury [11, p. 17] has noted, designers tend to be pragmatic and
186 indifferent to theory. ‘Amateurs program because they have a task to complete for
187 which programming is a good tool’. This applies to shape grammars too.

188 14.10 The Implementation Made Users Aware
189 of the Conventions of Shape Grammar

190 The interpreter executes—and thereby enforces—the conventions of shape gram-
191 mar, just as, say, an interpreter of the Python programming language executes and
192 enforces those of Python. As a result, users who have not yet assimilated those
193 conventions may be surprised by the results that the interpreter produces.
194 One case is when users could not visualize the results. This type of surprise is to
195 be expected in shape grammar, because of emergence. (Recall [9].) The interpreter
196 is doing what it should do.
197 Other cases, however, merit some thought. Sometimes users drew shapes
198 imprecisely. For example, they drew rectangles with slightly different proportions
199 and expected the interpreter to see them as similar. Or they drew shapes containing
200 overlapping or abutting lines, which are invalid. In shape grammar theory, such
201 shapes are reduced to their maximal form by replacing the overlapping and abutting
202 lines with single lines. When the interpreter received non-maximal shapes, it
203 sometimes produced incorrect results.
204 In such cases, we may wonder how to distinguish precise and imprecise, correct
205 and incorrect. On the one hand, a formalism like shape grammar is a formalism, and
206 therefore requires precision, including precision about imprecision. By requiring

174 A.I. Li

Layout: T1 Standard Book ID: 418385_1_En Book ISBN: 978-981-10-2328-6

Chapter No.: 14 Date: 1-9-2016 Time: 7:10 pm Page: 174/176



U
N
C
O
R
R
EC

TE
D
PR

O
O
F

207 precision, the interpreter helps users acquire the habit of precision. On the other
208 hand, Woodbury’s [11] remark about the pragmatism of designers suggests that we
209 consider whether we can get by with less precision. This is a question addressed by
210 Jowers et al. [12] with their ‘fuzzy’ implementation.
211 For our part, we will continue to implement shape grammars as they are defined
212 formally, even as we are aware of the tension with designerly pragmatism.

213 14.11 Conclusion

214 Our experiences tend to confirm our basic approach: shield users from sub-domain
215 tasks, support the edit–test cycle, and use a modeling application as an editing
216 platform.
217 This approach has two general benefits. The first is that the sub-domain work is
218 performed more accurately. The second is that the user can now concentrate her
219 attention on domain tasks: editing and testing grammars.
220 There is additionally a third benefit, that three-dimensional grammars are usable.
221 These have always been theoretically possible, but they are difficult to draw on
222 paper and even more difficult to execute mechanically. It is probably for this reason
223 that there is little three-dimensional work to be seen in the literature (Koning and
224 Eizenberg [13] is one of the few examples). Now, with Rhino as the platform for
225 viewing and editing grammars, it is easy to do three-dimensional work.
226 Needless to say, much remains to do, to ask, and to try before designers and
227 design analysts have a robust tool for working with shape grammars. With respect
228 to our implementation, the next step is to tighten the edit–test cycle by reduce the
229 distance between the grammar-editing platform (Rhino) and the grammar-running
230 platform (the interpreter). In the current version, switching between editing and
231 testing requires exporting a file from one platform and importing it into the other.
232 These steps can be eliminated by relocating the interpreter inside Rhino.
233 Other steps are less obvious. Having seen that users can be more interested in
234 products than process, how should we develop the implementation so it best sup-
235 ports users? At the same time, the users that we observed were doing design work.
236 Do users doing analysis work the same way? What about the many technical
237 features of shape grammar that are still to be implemented: schemas, weights,
238 parallel grammars, description, and so on? How will users want to interact with
239 these features?
240 There is still much to learn about how designers and analysts work with
241 grammars.

14 Implementing Shape Grammars for Designers 175

Layout: T1 Standard Book ID: 418385_1_En Book ISBN: 978-981-10-2328-6

Chapter No.: 14 Date: 1-9-2016 Time: 7:10 pm Page: 175/176



U
N
C
O
R
R
EC

TE
D
PR

O
O
F

242 References

243 1. Stiny, G. (1980). Introduction to shape and shape grammars. In Environment and planning B,
244 7, 343–351.
245 2. Stiny, G., & James, G. (1972). Shape grammars and the generative specification of painting
246 and sculpture. In C. V. Frieman (Ed.), Information Processing ’71 (pp. 1460–1465).
247 Amsterdam: North-Holland.
248 3. Knight, T. W. (1994). Transformations in design. Cambridge: Cambridge University Press.
249 4. Li, A. I. (2001). A shape grammar for teaching the architectural style of the Yingzao fashi. PhD
250 dissertation. Massachusetts: Massachusetts Institute of Technology.
251 5. Chase, S. (2010). Shape grammar implementations: The last 35 years. DCC workshop,
252 Stuttgart. July 11, 2010.
253 6. Li, A. I. (2011). Computing style. Nexus Network Journal, 13(1), 183–193.
254 7. Chau, H. H., Xiaojuan, C., Alison, M., & de Alan, P. (2004). Evaluation of a 3D shape
255 grammar implementation. In John S. Gero (Ed.), Design computing and cognition ’04
256 (pp. 357–376). Dordrecht: Kluwer
257 8. Li, A. I., Chau, H. H., Chen, L., & Wang, Y. (2009). A prototype system for developing two-
258 and three-dimensional shape grammars. In Proceedings of the 14th International Conference
259 on Computer-Aided Architectural Design Research in Asia, CAADRIA 2009 (pp. 717–726).
260 9. Krishnamurti, R. (2015). Mulling over shapes, rules and numbers. Nexus Network Journal,
261 17(3), 925–945.
262 10. Knight, T. W. (2015). Shapes and other things. Nexus Network Journal, 17(3), 963–980.
263 11. Woodbury, R. (2010). Elements of parametric design. London: Routledge.
264 12. Jowers, I., Hogg, D. C., McKay, A., Chau, H. H., & de Pennington, A. (2010). Shape
265 detection with vision: Implementing shape grammars in conceptual design. Research in
266 Engineering Design, 21(4), 235–247.
267 13. Koning, H., & Eizenberg, J. (2010). The language of the prairie: Frank Lloyd wright’s prairie
268 houses. Environment and planning B: Planning and design, 8(3), 295–323.

176 A.I. Li

Layout: T1 Standard Book ID: 418385_1_En Book ISBN: 978-981-10-2328-6

Chapter No.: 14 Date: 1-9-2016 Time: 7:10 pm Page: 176/176


	14 Implementing Shape Grammars for Designers
	Abstract
	14.1 Introduction
	14.2 The Implementation
	14.3 Using the Implementation
	14.4 Creating the Grammar
	14.5 Testing the Grammar
	14.6 Using the Results
	14.7 Observations and Discussion
	14.8 Users Were Able to Focus on Domain-Level Work
	14.9 Users Were More Interested in Product Than Process
	14.10 The Implementation Made Users Aware of the Conventions of Shape Grammar
	14.11 Conclusion
	References


