
 eCAADe 27 243-Session 07: Shape Studies 1

Editing Shapes in a Prototype
Two- and Three-dimensional Shape Grammar
Environment

Andrew I-kang Li1, Liang Chen2, Yang Wang3, Hau Hing Chau4

1,2School of Architecture, The Chinese University of Hong Kong,
3Department of Architecture, National University of Singapore,
4School of Mechanical Engineering, University of Leeds
1andrewli@alum.mit.edu, 2chenliang@cuhk.edu.hk, 3akiwangy@nus.edu.sg,
4H.H.Chau@leeds.ac.uk

Abstract: Recently we developed a prototype general shape grammar system,
called Grammar Environment (Li et al. 2009). It differs from other systems in
that it aims to support designers who design with shape grammars. One task
of such a system is to support users in editing shapes. The guidelines that we
followed in developing Grammar Environment suggested that the shape editing
system should both be integrated into the system and be powerful as a drawing
tool. This seemed to be contradictory. We decided to make two shape editors: one
stronger on integration, the other on drawing power.

Keywords: Shape grammars; shape grammar interpreter; shape grammar
environment.

not previously been articulated for shape grammar
systems.

One of the tasks of a shape grammar system is
to support users in editing shapes; how we did this
in Grammar Environment is the subject of this paper.
We begin by considering the shape editing capa-
bilities of these three representative shape grammar
systems (for a more complete list of existing systems,
see Li et al. 2009):
1. GEdit by Tapia (1999). This is a general 2D sys-

tem; i.e., it supports all shapes that are legal
under the given set of basic elements (in this
case, lines and labeled points). It has a generally
graphical interface.

2. SGS by Chau et al. (2004) This is a general 3D sys-
tem, but has only a partially graphical interface.

3. Shaper2D by McGill (2002). This is a limited 2D

Introduction

Recently we developed a prototype general system
to support designers who design with grammars (Li
et al. 2009). This system, called Grammar Environ-
ment, supports lines and labeled points in 2- and
3-space (i.e., U12, U13, V02, V03). In designing and con-
structing the system, we proposed and followed two
general guidelines.

First, the system should be specific to the do-
main of design. That is, users should be able to see
shapes and rules as graphical objects and to manip-
ulate those graphical objects directly.

Second, the system should support the edit-run
cycle. That is, users should be able to switch easily
between editing and running the grammar. These
guidelines may seem unsurprising, but they have

244 eCAADe 27 - Session 07: Shape Studies 1

system; shapes are restricted to a few types of
triangles and rectangles with labeled points. It
has a highly graphical interface.
From the general guidelines above, we derived

more specific guidelines for shape editing systems as
follows. First, rules should be displayed graphically,
and their basic elements should be directly manipu-
lable. Users should be able to draw; they should not
have to deal with nongraphical representations such
as sets of coordinates. With GEdit, users draw with a
drawing program. With Shaper2D, users manipulate
the triangles and rectangles directly. With SGS, users
type coordinates into a text file. (This seems to be
the case with most general systems, with the notable
exception of GEdit.)

Second, the editing system should be general.
That is, given a (finite) set of basic elements, usually
lines and labeled points, users should be able to cre-
ate any shape that is a finite set of those elements.
GEdit and SGS are general; Shaper2D supports only
triangles and rectangles with labeled points.

Third, shapes already created should be editable.
Shaper2D supports editable shapes; indeed, it is per-
haps the main point of the application. SGS supports
editable text files. GEdit does not support editable
shapes. Once created, shapes cannot be altered;
they can only be created anew.

Finally, users should be able to switch easily be-
tween editing and running the grammar. When they
modify shapes, they should be able to test the effect
easily. With Shaper2D, users manipulate shapes di-
rectly with real-time feedback. With SGS, users can
switch, albeit it between two applications (the sys-
tem and a text editor). With GEdit, the question is

moot, since users cannot edit shapes and rules.
The main characteristics of these three systems

are summarized in table 1. GEdit is notable for its
generality, graphic display, and direct manipulation,
features which likely account for its perceived user-
friendliness. However, once saved, shapes cannot be
edited. SGS is general, but its editing is text-based,
not graphical. Shaper2D is impressive in many ways
and has much to teach us, even though it is not
general.

No existing shape editing system satisfies all
our guidelines, and so no existing grammar system
supports design work as we proposed recently. The
solution would appear to be a single shape editing
system that satisfies all the guidelines. However, in
practical terms, this poses a dilemma.

On the one hand, ease of editing and direct ma-
nipulation suggest that the shape editor should sup-
port users in drawing as they normally do. But users
are accustomed to sophisticated drawing applica-
tions that we have neither the time, the ability, nor
the interest to replicate.

On the other hand, easy switching between
editing and running suggests that the shape editor
should be an integral part of the shape grammar sys-
tem. But then, any shape editor that we could create
would be too primitive for an experienced designer.

Since our goal is to make a prototype, we have
simply made two shape editors. One is rather primi-
tive as a drawing tool, but is built into Grammar En-
vironment, making an integrated system for editing
and running. This internal editor maximizes ease of
switching at the cost of limiting drawing. The other
editor is an Autocad applet. This external editor

Table1
The main characteristics of
shape editing support in three
representative existing shape
grammar systems. “++”
indicates complete support;
“+”, partial support; a blank,
no support

 eCAADe 27 245-Session 07: Shape Studies 1

close the window. The new or revised shape appears
in the list of rules or initial shapes, and the system is
ready for both running and continued editing.

External editor

As has been mentioned, the external shape editor
is an applet in Autocad (versions 2007 and 2008). As
a consequence, moving rules and initial shapes be-
tween Grammar Environment and the external edi-
tor takes a few more steps than with the internal edi-
tor. To move rules and initial shapes in this direction,
users export them as files (with rul and is suffixes,
respectively), switch to Autocad, launch the applet
if necessary, and open one file at a time for editing.

To move in the other direction, there are two

makes it easy to draw precise and complex shapes,
but at the cost of forcing users to switch between
applications.

Internal editor

When users select a command to create or edit a
shape, the internal shape editor appears in a pop-up
window (figure 1). If the shape is new, the canvas is
blank; if the shape already exists, it is displayed on
the canvas. There are just a few commands: line,
rectangle, labeled point, drag, and delete. The basic
elements are lines and labeled points in 2-space, i.e.,
U12, V02. Users can create any 2D shape that is com-
posed of these basic elements and that fits onto the
canvas. When finished, they name the shape and

Figure 1
The internal shape editor is in
a pop-up window. The lists of
rules and of initial shapes can
be seen in the main window

246 eCAADe 27 - Session 07: Shape Studies 1

In print mode, users can obtain several types of
drawings (in dwg or dxf format) of their work. One
shows the grammar: its rules and shapes, along with
the names assigned by the users. A second shows
the derivation of a final shape: the grammar, the
shape after each rule application, and the names
of the rules applied (figure 4). This is created from
a derivation file (with a drv suffix) that users save in
Grammar Environment. The third drawing, also cre-
ated from the derivation file, shows the final shape.
All these are useful as hard copies of users’ work. The
drawing of the final shape is especially useful as a
link to downstream processes. For instance, it can
be converted to a surface model and sent to rapid
prototyping.

pathways. One is to save the files, switch to Grammar
Environment, open an existing grammar if neces-
sary, and import them into that grammar. The other
is to save the files, assemble those files into a new
grammar (with a dat suffix) using the applet’s dat file-
maker routine (figure 2), switch to Grammar Environ-
ment, and open the new grammar. Rules and initial
shapes created in the Autocad applet are identical
to those created in the internal editor. However, 3D
shapes cannot be edited in the internal editor.

The applet has two modes: edit and print. In edit
mode, it displays a cube (figure 3) inside which users
can draw and edit shapes, using as basic elements
lines and labeled points in 3-space, i.e., U13, V03. Left
and right shapes are drawn in different layers, some-
what similarly to GEdit.

Figure 2
The dialog box of the external
shape editor’s dat file-maker
routine, which allows
users to assemble rules and
initial shape files into a new
grammar

 eCAADe 27 247-Session 07: Shape Studies 1

Second, users familiar with shape grammars
usually started with the internal editor. However,
they were usually also familiar with Autocad, so in-
evitably they became frustrated with the internal
editor, and moved to the external editor. For these
users, switching between Grammar Environment
and Autocad seemed less of a problem than we ex-
pected. Apparently, they could keep the big opera-
tional picture in mind. In particular, they liked being
able to draw with the power of Autocad, and to link
to downstream processes.

From these observations we can draw some use-
ful conclusions. First, users want to work graphically.
The fact that novices found the integrated system
generally congenial suggests that our guidelines
are appropriate for them. Of course, those who

Discussion

We have done informal testing with users of differ-
ent ages (high school and up) and with different
amounts of experience with shape grammars, with
Autocad, and indeed with design. This testing was
limited, but we were able to make two observations.

First, novice shape grammar users were comfort-
able with the internal shape editor. This is probably
because their main task was learning how to edit
and run shape grammars, and the integrated system
helped clarify these tasks. On the other hand, they
found the internal editor limiting, because its opera-
tions were too low-level and imprecise. For instance,
they could not draw an equilateral triangle or easily
locate a labeled point with respect to a line.

Figure 3
The external shape editor
is an Autocad applet. Users
draw the shapes inside the
cube

248 eCAADe 27 - Session 07: Shape Studies 1

sometimes want to enter coordinates can do so in
the external editor. But neither novices nor expe-
rienced users objected to direct manipulation of
graphical objects.

Second, each editor has its own audience and
purpose. In particular, the internal editor need not
be seen as an underpowered version of the external
editor. The internal editor is used by novices, who
benefit from working inside a single application. The
external editor, on the other hand, offers sophisti-
cated drawing capabilities, but does not obscure the
overall operational picture for experienced users.

In other words, users are not a monolithic group.
Their domains, objects, and tasks vary with their ex-
perience and knowledge. The fact that novices could
not easily draw what they wanted to draw suggests

that we do not know enough about how they use
shape grammars. In particular, instead of support-
ing direct manipulation of basic elements, we might
reexamine the approach of Shaper2D, where users
manipulate higher-level objects, i.e., triangles and
rectangles. This might help us design a shape edi-
tor that is simple for novices. In general, we need to
learn more about what types of users there are, and
what they need.

Finally, the external shape editor worked bet-
ter than we expected. We suspect that our general
guidelines made the switching between applica-
tions less distracting than otherwise might have
been the case. This makes the advantages that much
more attractive: users can draw with all the power of
a sophisticated drafting tool, they can import shapes

Figure 4
A derivation and grammar as
constructed by the external
shape editor

 eCAADe 27 249-Session 07: Shape Studies 1

from upstream drawing processes, and they can ex-
port shapes to downstream processes.

Overall, it seems reasonable to say that our gen-
eral approach is appropriate, but that some of our
assumptions need to be revisited. In particular, we
need to know more about what designers do when
they work with shape grammars and shape grammar
systems. Grammar Environment provides a platform
for just this kind of inquiry, even as it supports de-
signers doing design.

Grammar Environment, sample grammars, tuto-
rial videos, and other supporting materials are avail-
able at http://www.cuhk.homeip.net/wikisgi/index.
php/Main_Page.

Acknowledgements

This work was supported by a Competitive Ear-
marked Research Grant from the Hong Kong Re-
search Grants Council, which we acknowledge with
thanks. Nujaba Binte Kabir tested the systems thor-
oughly and provided the images.

References

Chau, H. H. Chen, X. J. McKay, A. and de Pennington, A.:
2004, Evaluation of a 3D shape grammar implemen-
tation, in J. S. Gero (ed), Design computing and cog-
nition ’04, Kluwer, Dordrecht, pp. 357–376.

Li, A. I. Chau, H. H. Chen, L. and Wang, Y.: 2009, A proto-
type system for developing two- and three-dimen-
sional shape grammars, in T. W. Chang, E. Champi-
on, S. F. Chien and S. C. Chiou (eds), CAADRIA 2009:
proceedings of the 14th international conference
on computer-aided architecture design research
in Asia, Department of Digital Media Design, Na-
tional Yunlin University of Science and Technology,
Douliou, Taiwan, pp. 717–726.

McGill, M. C.: 2002, Shaper2D: visual software for learn-
ing shape grammars, in K. Koszewski and S. Wrona
(eds), Design e-ducation: connecting the real and
the virtual, Proceedings of the 20th Conference on
Education in Computer Aided Architectural Design

in Europe, eCAADe, Warsaw, pp. 148–151.
Tapia, M.: 1999, A visual implementation of a shape

grammar system, Environment & planning B: plan-
ning & design, 26, pp. 59–73.

250 eCAADe 27 - Session 07: Shape Studies 1

