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We present a general shape grammar implementation that supports subshape de-
tection and handles lines and labeled points in three-dimensional space. Its front
and back ends are both set in the CAD application Rhinoceros3d. Informal obser-
vations of designers using the implementation suggest that they are more inter-
ested in producing designs to work with than in using the more specialized fea-
tures of shape grammars. This in turn suggests that researchers who create such
implementations have more to learn about such usages designers use them.

1 Introduction

Since the very first shape grammar implementation [4], the fundamental technical
challenge has always been subshape detection [6], the recognition of one shape as
being part of another shape, under some allowable transformation. Stouffs and Kr-
ishnamurti [13] identified two additional challenges. The first is generality – the
rapid development, adaptation, and maintenance of grammar-based systems – or
the ability of users to create and run their own grammars. 

The second challenge concerns ways of enabling designers to employ gram-
matical rules in a manner that does not impede their designing. Tapia [15] partly
addressed this challenge by paying attention to the user experience, in particular
visual interaction. In his implementation, users created shapes, not by typing coor-
dinates,  but  by  drawing  the  shapes  directly  in  a  drawing  program,  that  is,  as
shapes. In shape grammars, shapes and their component lines and points are do-
main objects, and now users could manipulate them directly. To apply rules and
generate new shapes, they used a standalone interpreter, known as GEdit. 
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The first author, Li [8], continued this approach by increasing the types of do-
main objects that users could manipulate directly: not only lines and shapes, the
components of shapes, but also shapes and rules, the components of grammars. He
used a commercial modeling application, first AutoCad, then Rhinoceros3d (com-
monly known as Rhino), in which users could draw shapes and rules and handle
newly generated shapes. The difference from GEdit was that the whole grammar –
the initial shape and the rules – was a Rhino model and could be saved as a Rhino
document. Li called this a  whole-grammar  approach,  since the whole grammar
was available for thinking through direct manipulation. 

This provided two advantages. First, users could now directly manipulate all
domain objects: rules, shapes, lines, and labeled points. Second, they could now
organize rules and shapes in groups to help their thinking, just as they organize
icons on their computer desktops. This visual organization is known as secondary
notation. 

In addition, Rhino offers a wide range of tools, with which users could pre- and
postprocess grammatically created shapes. They could, for example, create com-
plicated  shapes  with scripts,  modify  those shapes  with grammars,  and convert
those shapes to solid models for 3d printing. Users could now use grammars in a
larger work stream of designing and making. 

Li’s arrangement had a significant disadvantage, however. Like Tapia’s, it con-
sisted of two separate applications: one for creating and manipulating shapes, the
other for applying rules and calculating new shapes. Where Tapia had GEdit, Li
had Grammar Environment, an application developed by Chau et al. [1]. 

This  split  arrangement  meant  that  when  users  switched  tasks,  they  had  to
switch applications. And, when switching applications, they also had to transfer
shape and rule files. Li provided a library, written in the Python programming lan-
guage, to facilitate file transfer and similar tasks, but this non-domain work clearly
impeded users’ ability to focus on domain objects and operations. 

We now address this issue by replacing the stand-alone interpreter with one
that runs inside Rhino. This new back end is SortalGI, the sortal grammar inter-
preter [12]. It supports subshape detection and is written in the Python program-
ming language, as are the front end scripts, which have been adapted from the pre-
vious version. In this integrated version, all scripts run in Rhino (both v5 and v6
for Windows, and v6 for Mac), and users can do their grammatical work entirely
within the Rhino environment.



3

2 The front end

Since the front end is set inside the Rhino environment, it is only one of many
functionalities already available there.  Its  purpose is to enable users  to use the
back end easily. One of the ways it does so is by rendering the components of the
grammar – those Rhino objects drawn by the user – parsable for communication to
the back end. And for this, the front end needs to use some of Rhino’s organiza-
tional capabilities, such as layers. At the same time, we want to keep those very
capabilities available to users to the largest extent possible. In anticipation of this
tension between structure and freedom, we followed a few working guidelines. 

First, shapes are composed of Rhino objects, currently line curves and text dots.
That is, the objects themselves are the shape; there is not some symbolic represen-
tation between the shape and the user. They are in the foreground, available for
manipulation by the user, and persist between work sessions as the record of the
grammar. 

Second, the Rhino work space is divided between the system and the user. The
system needs a place to do its work, and so do users. One way we try to accommo-
date both system and users is by having the system display rules and all calculated
shapes  in  the  positive-y  half  of  the  three-dimensional  virtual  work  space.  The
other half is left for users to use as they will. The other way is by assigning rules
and calculated shapes  to their  own, automatically named layers.  This way,  the
front end can identify rules and calculated shapes, and users can also create and
name layers for their own use. 

Third, commands are implemented as Python scripts, as in the previous, split
version. Users invoke a command by running a script. This is an interim measure;
in  future  versions  commands  will  be  available  through  more  straightforward
means, like menu items. 

These working guidelines are intended to make users’ experiences easier and
more productive. The first step for users is to initialize the Rhino document by
running the initialize script. This prepares both the back end, by initializing its in-
ternal representation and rule register, and the front end, by creating a new layer,
Shape 0, for the initial shape. Shapes on layers named Shape n are automatically
scrolled so that results are shown chronologically along the positive  y-axis with
the latest result always displayed just above the xz-plane.

If the document already contains a grammar, the front end reads the rules into
the rule register, and users can resume using the grammar immediately. If the doc-
ument is new, then it is time for users to create at least an initial shape and a rule.
To create the initial shape, users simply draw it with line curves and text dots in
the positive-x, positive-y quadrant of the space (the upper right quadrant of the xy-
plane in two dimensions) on the layer Shape 0. 
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To create the rule,  users draw below the  xz-plane on any user-named layer.
Then they run the create rule script, which prompts them to select: 1) the elements
of the left shape; 2) the reference point of the left shape; 3) the elements of the
right shape (if any); and 4) the reference point of the right shape (if not empty). 

The system then draws the rule in the negative-x, positive-y quadrant on a new
layer Rule 1. Around each of the left and right shapes is a three-dimensional frame
which indicates the shape’s coordinate system (Fig. 1). The elements of the two
shapes and both frames are locked in a single group for easy selection for rule ap-
plication. If users draw a second rule,  previously created rules will be scrolled
away from the xz-plane to make space to draw the new rule. Each new rule is en-
tered into the rule register. 

Now users have at least one shape and one rule. They run the apply rule script,
which prompts them to select: 1) the shape; 2) the subshape (optional); and 3) the
rule. By selecting a subshape, users can, for example, apply a rule to a single cell
in a matrix. 

The system calculates all next shapes and, if any, draws them in a row in the
positive-x, positive-y quadrant, each shape on its own layer, and scrolls them –
along with all earlier generations of calculated shapes – away from the  xz-plane
(Fig. 2).

Fig. 1. Two-dimensional (top) view of the work space, containing a grammar before the first rule
application. The rule (with frames around the two shapes) is in the upper left quadrant, while the
initial shape (the 16 squares) is in the upper right quadrant. The two shapes in the lower right
quadrant are the shapes drawn by the user to define the rule.
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Fig. 2. Two-dimensional (top) view of the work space after 16 rule applications. Only the last 3
generations are shown here; the first 13 generations are scrolled away from the x-axis.

3 The back end

The back end consists of the SortalGI shape grammar interpreter library and API,
developed in the Python programming language. Beyond lines and labeled points
(text dots in Rhino), SortalGI actually supports a variety of different shape gram-
mar forms, including representations and matching algorithms. SortalGI presents a
modular implementation of a generalized shape grammar interpreter, utilizing sor-
tal  structures as representational building blocks.  Sortal  (representational) struc-
tures are hierarchically defined as formal compositions of other,  primitive, data
structures, denoted sorts [11]. The main compositional operators are a co-ordinate,
disjunctive composition of any number of sortal structures, as in a composition of
lines and points , and a subordinate, semi-coǌunctive composition of a primitive
sort with any other sortal structure under an object–attribute relationship, as in the
case of labeled points – points with labels as attributes. Where the fundamental
technical challenge is subshape detection, sortal grammar formalisms [9,13] bene-
fit from the fact that every composite structure derives its matching mechanism for
subshape detection from the respective matching mechanisms of the component
structures. This means that, ultimately, the matching mechanism of any composite
sortal structure derives from its primitive component  sorts, solely depending on
the respective compositional operators. Having implemented the matching mecha-
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nisms for each of the primitive  sorts, any composition thereof has its matching
mechanism implemented as well. In this way, the SortalGI interpreter allows for a
broad range of shape grammar formalisms to be supported, including many for-
malisms found in shape grammar literature. 

Beyond its representational flexibility, the SortalGI library includes two alter-
native matching mechanisms for spatial elements: a non-parametric mechanism
matching shapes under similarity transformations (translation, rotation, reflection
and uniform scaling)  and a parametric-associative mechanism matching shapes
under some topological constraints as well as associations of perpendicularity and
parallelism. The former recognizes shapes based on similarity, a square matches
any square, irrespective of its location, orientation or size. Similar for rectangles
of a fixed length-to-width ratio. The latter extends the matching mechanism to
polygons of  a specific arity.  A convex quadrilateral  matches  any other  convex
quadrilateral polygon, irrespective of its exact shape, on condition that the former
have no perpendicular or parallel edges. 

Any such perpendicular or parallel edges in the shape to be matched would
need to be matched in the target shape. Note that while the SortalGI library adopts
a  graph-based  representation  for  parametric-associative  shapes,  unlike  other
graph-based implementations [5,14,17], it does not use any sub-graph matching
algorithm but instead relies on a combinatorial enumeration of potential matches.
In general, graph-based, parametric subshape recognition is nonpolynomial, even
with a hypothetical, linear time subshape detection algorithm [18]. In comparison,
a combinatorial enumeration, searching for  k  elements within a set of  n  (distin-
guishable) elements, yields a tight bound of  O(nk). Depending on the size of  k,
this bound is exponential in the worst case, while one can use attribute labels to
limit the combinatorial explosion. 

As such,  the SortalGI library  supports both parametric-associative and non-
parametric shape grammars,  including points, line and plane segments, circular
and elliptical arcs, quadratic Bezier curves, labels, weights, colors, enumerative
values, and (parametric) descriptions, in 2D and 3D. Emergence is naturally sup-
ported. Currently, the front end utilizes only the non-parametric mechanism, ap-
plied to lines and labeled points. However, it can be extended to include other do-
main objects as well as the parametric-associative matching mechanism. TNever-
theless,  even  if  thehough  the  entireSortalGI  library  is  available  in  its  entirety
within the Rhino modeling environment, the API provided does limit the extent of
geometric and non-geometric element types that are supported, due to the need to
graphically visualize the data within the Rhino modeling environment.This API
has been specifically developed to support the integration of the SortalGI library
within Rhino. In particular, it not only acts as a programming interface providing
access to the underlying functionality, but also supports the conversion of geomet-
ric data from Rhino into the SortalGI interpreter and back. At first, the conversion
was done from an agnostic description instead of from Rhino’s internal object rep-
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resentation. The agnostic description was conceived as a text-based data structure,
not unlike the one that was used with Chau et al.’s [1] engine. The current version
of the API no longer accepts the agnostic description and instead relies on Rhino
GUIDs referencing Rhino objects. This is possible because the engine runs within
Rhino and can query Rhino objects directly using Rhino’s Python API. 

The API mainly offers functions to create shapes from lists of Rhino GUIDs, to
create rules, to determine rule applications and to draw the resulting shapes. The
drawing process is an integral part of the conversion from the sortal representation
back to Rhino GUIDs, in order to generate these GUIDs. However, in order to al-
low the front end to decide when and where which results should be visualized,
the visibility of the resulting Rhino objects is turned off by default. 

The library maintains a rule register and every rule is automatically added to
the register. For this reason, rule names must be unique. Rules can be retrieved
from the register by name. The library also maintains a shape register although
that is entirely voluntary and serves little use in the context here described. Addi-
tionally, the library also maintains a register of rule applications both to improve
rule application performance, when the same rule is applied to the same shape
more than once, and to allow for the conception of a derivation tree. There remain
many questions as to how such a derivation tree may be accessed and visualized
within a platform such as Rhino and, as such, this functionality is currently under-
developed and unused.

One difficulty  encountered  has  been the precision of  geometric  information
within Rhino. To adjust the precision of computation within the library to the re-
quirements of Rhino, a precision parameter has been created within the SortalGI
library that can be set and adjusted through the API. 

4 Discussion

Here we discuss our experiences in workshops and a graduate-level course2 for de-
sign students, most of whom had had no previous experience with shape gram-
mars. 

2CAAD Futures workshop, June 2019, Daejeon, South Korea; Ouroborous workshop, August
2019,  National  Yunlin  University  of  Science  and  Technology,  Yunlin,  Taiwan;  eCAADe  +
SIGraDi workshop, September 2019, Porto, Portugal; Advanced computational design, Fall 2018
and Fall 2019, Kyoto Institute of Technology, Kyoto, Japan.



8 

4.1 The user experience

As for the front end, weWe recall that the proximate motivation for adopting an
internal back end was to eliminate the mental friction of repeatedly shifting focus
and files between applications. The idea was straightforward, but the effect was as
consequential  as  we  had  anticipated:  users  simply  spent  more  time on  design
tasks. As a result, it was easy to observe that users were interested in grammati-
cally generated shapes as objects for their design work, but not as elements in a
structured design space. Users accumulated shapes, periodically evaluated them as
individuals on their own account, and then culled them without, for instance, try-
ing to preserve derivational sequences. 

And if users were not much concerned by the technical niceties of shape gram-
mars, neither were they willing to forsake other design tools for shape grammars.
For example, instead of drawing complicated shapes by hand, they wrote Python
scripts to create them. They then applied grammar rules to these shapes. In other
cases, they used grammars to create what were essentially design diagrams, con-
sisting of zero-width lines. They exported the diagrams to Illustrator, where they
assigned (non-zero) widths to the lines and extracted the edges of those lines as
cutting paths. 

These observations are entirely consistent with Woodbury’s [16] assertion that
designers are pragmatic, use whatever tools will help them in their work, and tend
to use those tools with less technical sophistication than expert users. This sug-
gests that there is a slight conflict between the authors’ interest in domain objects
and operations on the one hand and designers’ interest in getting the job done on
the other. Or perhaps we should say that domain objects and operations are not the
same for designers as for the authors, the specialists who created the tool. 

For example, we noticed that there were situations in which users were apply-
ing the same rule repeatedly to the same shape, when filling in cells in a matrix,
for example. This was inefficient, not only because the user had to run the script
for each reapplication, but also because the system was redoing many of the same
calculations. We wrote a script for applying a rule repeatedly, and the users re-
ceived it enthusiastically. It was slow, but it freed users from what was to them
unnecessary work. The back end offers what are known as flows, which are practi-
cally composite shape rules and provide a generalized capability for rule applica-
tion. Users showed us the importance of this capability, and we expect to develop
it further. 
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4.2 The grammarian’s perspective

Similar to the development of the front end interface, the SortalGI library is con-
ceived and developed with shape grammars in mind, rather than simply as a rule
engine supporting search and replace. As such, spatial elements are distinguished
as either 2D or 3D and as adhering to either a non-parametric or a parametric-as-
sociative matching mechanism. Even though it supports multiple grammar forms,
the library provides little support for switching between grammar forms. This may
not be much of an issue for now, as the interface acts only upon 3D shapes and
utilizes only the non-parametric matching mechanism, for now. However, future
developments  may  see  the  utilization  of  the  parametric-associative  matching
mechanism as  well,  possibly requiring the exchange  of  data  between different
forms and representations. 

Most shape grammars in literature also consider a single formalism to apply for
the entire grammar. Even if multiple formalisms are conceived to be used simulta-
neously, they are generally used in parallel [7], and any exchange of information
between these parallel representations relies on description rules to include refer-
ences to other descriptions or shapes. Such exchange is fully supported in SortalGI
[3,10]. Duarte [2] conceives of a discursive grammar that combines two grammars
sequentially, a programming grammar generating design briefs based on user and
site data and a designing grammar using the design brief(s) to generate designs in
a particular style. However, the programming grammar is only a description gram-
mar and any exchange of information between the two grammars is accomplished
through description  rules  operating  on the descriptions  resulting from the  pro-
gramming grammar.

Acknowledging that a design that originally was conceived in plan or section,
or both, might be further elaborated in three dimensions, or the designer might
want to use both non-parametric and parametric-associative shape rules intermit-
tently, the SortalGI API does attempt to address these limitations. In particular, it
provides support to exchange data between two- and three-dimensional represen-
tations, assuming these otherwise correspond to a large degree. Similarly, it sup-
ports the exchange of data between representations adhering to the non-parametric
and  parametric-associative  matching  mechanisms,  again  assuming  some corre-
spondence between both representations.

4.3 Explorations of extended functionality

Beyond its use within the Rhino modeling environment, as presented in this pa-
per,  the SortalGI library can be accessed and employed in (at  least) two more
ways:  firstly, within a Python development environment; secondly, as a Rhino/



10 

Grasshopper plug-in [3], requiring no programming or scripting. These offer ac-
cess to additional functionality and attempt to address some of the restrictions of
the visual front end presented in this paper. For example, the Grasshopper plug-in
supports both non-parametric and parametric-associative shape rules to be defined,
and for these rules to be applied intermittently. However, it should be noted that
the underlying data exchange mechanisms are not entirely general, as it is difficult
to establish a general data exchange mechanism to apply between any two sortal
representations when these representations are unknown in advance and, in the ex-
treme, may not have much in common. We expect the future use of SortalGI to
provide more insight to which extent such exchange of data is actually important
and desired. 

Another matter for further consideration is the relation between the front end
and the SortalGI Grasshopper plug-in, which may be considered as two competing
interfaces to the SortalGI interpreter, but might also serve as complementary ways
of accessing its functionality. Specifically, the integration of the front end with the
plug-in could support users in generating complex shapes and rules, while at the
same time providing more flexibility in applying rules. Currently, the front end
and the plug-in each embody their own initialization set-up which are not entirely
compatible. Instead, adopting a common sortal representation and ensuring a com-
mon initialization may allow users to switch back and forth. Besides this integra-
tion, user experiences from either or both interfaces may demonstrate best prac-
tices and influence their individual development. 

In terms of rule application, the plug-in provides four different components that
to some extent reflect ways of adopting the front end as outlined before. The first
one applies only a single match, which may be selected by index or, otherwise,
randomly. 

The second one is to conform to the behavior of the front end. It applies all
matches in parallel, returning as many results as there are matches and allowing
these all to be visualized separately. 

The third one may serve to apply a single shape rule repeatedly to fill cells in a
matrix. Applying all matches one after another, it ignores the possibility that the
actual result from one application may no longer be able to serve as the input for
the next application to match. Note that only in the case of an addition rule does
this amount to the exact same behavior as repeating the rule application truly se-
quentially. In the latter case, if any part of the shape is removed as a result of rule
application, then this removal will impact subsequent rule applications, but. This
is not the behavior of the third rule application node. Instead, visually, it behaves
as if all matches are applied in parallel,  combining all the results into a single
shape outcome. 
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Finally, the fourth one can be used to apply a rule repeatedly, although it must
be specified how many times. It takes a series of rules as input and applies each
rule in sequence, returning all intermediate results as well as the final result. In ad-
dition, the plug-in offers a component that does not actually apply the rule, but, in-
stead, returns all the matches. As such, it supports a form of search and extraction
based on the left side of the rule. These may then serve as input to one or more
rule applications and, as such, improve the efficiency through the application of a
divide-and-conquer technique. 

5 Conclusion

We presented a general shape grammar implementation that supports subshape
detection and handles lines and labeled points in three-dimensional space. Its front
and back ends are both set in the CAD application Rhinoceros3d. Informal obser-
vations of designers using the implementation suggest that they are more inter-
ested in producing designs to work with than in using the more specialized fea-
tures of shape grammars. Clearly we need to understand better how designers use
grammatical tools. Even though they may not aspire to be grammatical specialists
like the present authors, they have much to teach us about how to make grammars
more useful to them.
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